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In this paper, we look at clustering in systems of globally coupled identical phase oscillators. In particular,
we extend and apply techniques developed earlier to study stable clustering behavior involving clusters of
greatly differing size. We discuss the bifurcations in which these asymmetric cluster states are created, and how
these relate to bifurcations of the synchronized state. Because of the simplicity of systems of phase oscillators,
it is possible to say a significant amount about asymmetric clustering analytically. We apply some of the theory
developed to one particular system, and illustrate how the techniques can be used to find behavior which might
otherwise be missed.
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I. INTRODUCTION

Systems of globally coupled identical oscillators, while
simple to describe, can display a surprising variety of inter-
esting behaviorf1–5g. These systems have been used as
models of a number of physical and biological phenomena
ssee the references inf1,6gd. Among the collective behaviors
which can be observed in these systems are synchronization,
clustering, “splay-phase” states, and chaotic statesseven
where the dynamics of individual oscillators do not admit
chaotic solutionsf7,8gd.

The defining feature of globally coupled systems is their
full permutation symmetry, which gives rise to a large num-
ber of invariant subspaces. Solutions on these subspaces are
characterized by the fact that oscillators divide into groups or
“clusters” ssynchronized solutions are the extreme cased and
hence we call these subspacescluster subspaces. These sub-
spaces are central to the system’s behavior, and even chaotic
behavior is often related in some way to themse.g., the cha-
otic attractor contains within its closure unstable cluster
statesf9gd.

An obvious technique for the study of clustering is to
restrict the system to its invariant subspaces, and analyze the
reduced systems so obtained. But such restrictions give one
no idea of behavior transverse to the invariant subspaces. In
f10g we developed some fairly general theory describing
clustering in globally coupled systems, which included con-
sideration of behavior transverse to the invariant subspaces.
Of particular interest were stable, but highly “asymmetric”
cluster states which can sometimes be predicted to exist in a
domain where the synchronized state is also stable, and are
often associated with its loss of stability. By “asymmetric”
we will mean cluster states with the great majority of oscil-
lators in one cluster. In this we follow the usage off1g,
where, however, the focus was primarily on the symmetric
case. Although here we restrict our attention to systems of
ordinary differential equations, recently asymmetric cluster-
ing has been studied and found to be important in systems of
globally coupled mapsf11,12g.

Asymmetric clustersACd states have a certain intuitive
appeal, because while the majority of oscillators perform
some motion in unison, a few are allowed different dynam-

ics. These dynamics need not be close to those of the domi-
nant cluster. In fact, numerical experiments indicate that for
certain systems, the minority of oscillators in the smaller
cluster may even be allowed to behave chaotically, while the
rest behave approximately periodically. In real-world situa-
tions it would be easy to attribute the existence of a few
individuals which did not synchronize with the pack to dif-
ferences in the individuals themselves or aysmmetries in the
coupling, but the behavior we describe occurs in systems of
symmetrically coupled identical oscillators.

We start by commenting on what can be said about asym-
metric clustering in general systems of globally coupled os-
cillators. Attention is then focused on the easier case of phase
oscillators whose simplicity allows for stronger results.
These results are illustrated via the study of a particular sys-
tem which has appeared in the literature before. Finally, the
effects of breaking the symmetry of the system are briefly
explored.

II. THEORY OF AC STATES

Here we briefly summarize the relevant result fromf10g
which will be needed. Of interest are systems ofN oscillators
of the form

ẋi = fsxid + gS 1

N
o
j=1

N

hsxi − xjdD, i = 1,…,N. s1d

xi may belong to a variety of spaces, for example Euclidian
space, a circle, or a torus. Assuming that there exists some
asymptotic synchronized state defined by the solutionxistd
=f0std, i =1,… ,N, it is possible to construct a “reduced
model,”

ẋ = fsxd + gsh„x − f0std…d. s2d

Formally, what is done to construct this second nonautono-
mous system is simply to replace eachxj except xi with
f0std. f0std is of course only unique up to a shift in the
origin of time. Trivially, Eq. s2d always has the solutionx
=f0std. But in addition it can be shown that ifsid the solution
xistd=f0std, i =1,… ,N in the full system fEq. s1dg is
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T-periodic and stable, andsii d the reduced modelfEq. s2dg
possesses a stableT-periodic solutionx=c0stdÞf0std, then
for sufficiently large systems of oscillators, Eq.s1d possesses
stable periodic cluster solutions with a small proportion of
the oscillators in one cluster—i.e., highly asymmetric cluster
states. This is a specialization and amalgamation of theorems
3 and 4 inf10g.

Note that if the conditions above are met,N can always be
chosen large enough to ensure that the asymmetric cluster
states exist. From now on, if we say that asymmetric clusters
exist in a system at a given parameter value, we will mean
that they exist for sufficiently largeN. Moreover, when they
do exist, they can usually be found numerically, because the
proof tells us where to look: the larger cluster performs a
motion close tof0std while the smaller cluster does some-
thing close toc0std.

Qualitatively, the argument goes as follows: As long as it
is a small proportion of oscillators which perform the unor-
thodox motion, causing only a minor disturbance to the
mean, these oscillators may be tolerated, and need not be
pulled back into the pack. Perturbation arguments are used to
prove the existence and hyperbolicity of these states. We
stress that there is no reason to suppose that the motion of
the second cluster is close to the motion of the first cluster.

In general, there will not be an analytic form for the syn-
chronized solutionf0std to use in the reduced model. Al-
though this might at first seem to be an impediment to ex-
ploring the model in the search for AC behavior, this is only
apparent. To see why, we simply note thatf0std is by defi-
nition a solution of the systemẋ= fsxd+g(hs0d). The reduced
model is then a projection of the simple skew product
system,

ẏ = fsyd + g„hs0d…, s3d

ẋ = fsxd + g„hsx − yd…. s4d

The analysis above has so far been about the existence of
two-cluster states. It can, however, be extended to the case of
more than two clustersf10g. Basically, given the existence of
k stable solutions in the reduced model, we can prove the
existence of stable asymmetrick-cluster states in the full
system.

III. PHASE SYSTEMS

Note that up to this point, the results have applied to
arbitrary systems of identical globally coupled oscillators.
Sometimes, however, under the assumption of sufficiently
weak coupling, systems of oscillators can be described using
a single phase variable for each oscillatorf13g. In this case,
the one-dimensionality of the oscillators allows us to say
more about asymmetric clustering than in the general case.
Although the assumptions needed to justify the phase ap-
proximation cannot always be justified, phase oscillators
have been used to model a number of biological phenomena,
including neuronsf14g.

Consider a system of phase oscillators where the coupling
includes Fourier modes up to themth mode,

ḟi = v +
1

N
o
j=1

N

o
k=1

m

faksinksfi − f jd + bkcosksfi − f jdg,

s5d
i = 1,…,N.

This form includes as a special case the system studied in
f15g. We can make three general statements about system
s5d:

sid If there is only one Fourier mode in the coupling, i.e.,
m=1, there can be no AC states.

sii d For m=2, given a set of parameter values
a1,a2,b1,b2, we can calculate analytically whether the sys-
tem possesses asymmetric two-cluster states at these values.

siii d For generalm, there can be AC states with up tom
clusters.

These statements will allow us to explore in greater detail
the behavior of the particular system we study below. They
arise via the construction and analysis of a reduced model as
detailed above. In order to see this, we first note that Eq.s5d
has a synchronized solution of the form

fistd = Rt, i = 1,…,N, s6d

where R;v+ok=1
m bk. This solution is stable as long as

ok=1
m kak,0. At ok=1

m kak=0, it undergoes a degenerate trans-
critical bifurcation to be described in Sec. IV. Substituting
the solution into Eq.s5d gives

ḟ = v + o
k=1

m

faksinksf − Rtd + bkcosksf − Rtdg. s7d

The coordinate changeu=f−Rt gives

u̇ = o
k=1

m

faksinku + bkscosku − 1dg ; f hakj,hbkjsud, s8d

which is the reduced model for this system. This is a one-
dimensional autonomous system, whose only solutions can
be fixed points. Since it is periodic, these fixed points will
generically come in stable and unstable pairs, except at bi-
furcation valuesf20g. From the point of view of asymmetric
clustering, we are interested in the zeros off hakj,hbkjsud. The
next stage is to use complex representations of sin and cos to
get

f hakj,hbkjsud = o
k=1

m Fak
seiku − e−ikud

2i
+ bkS seiku + e−ikud

2
− 1DG ,

s9d

which has zeros at the same values as

f̃ hakj,hbkjsud ; o
k=1

m Fak
seism+kdu − eism−kdud

2i

+ bkS seism+kdu + eism−kdud
2

− eimuDG . s10d

Setting z;eiu, we see thatf̃ hakj,hbkjsud can be written as a
polynomial inz of the form
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Pszd = o
k=0

2m

ckz
k s11d

for complexck. Moreover, it has one solution atz=1, so that
it can be written

Pszd = sz− 1d o
k=0

2m−1

dkz
k. s12d

The polynomialok=0
2m−1dkz

k has 2m−1 roots,hziji=1,…,2m−1, in
general distinct. LetP,C be defined as any vertical strip of
the form hzPC :ReszdP fnp ,sn+2dpdj. Then the map
z°eiz:P→C is invertible, and hence to each of the rootszi
there is a uniqueui PP such thateiui =zi.

Returning to the equationf̃ hakj,hbkjsud=0, we know from
the geometry used to define it that its solutions generically
come in pairs which are either both real or both complex.
These correspond to pairs ofzi either on or off the unit circle.

Thus there are always two real roots tof̃ hakj,hbkjsud with m
−1 further pairs of roots, in general complex.

If m=1, this means that there can be no stable zeros apart
from the trivial one. Hence we can never predict AC states
when there is only one Fourier mode in the coupling.

If m=2, ok=0
2m−1dkz

k is a cubic polynomial, and can be
solved analytically to give the rootsz1,z2, andz3, from which
we can calculateu1,u2, andu3. Oneui must be real, but if the
other pair are also real, then there are further stable zeros. If
the base solution atu=0 is also stable, then there will be
stable asymmetric two-cluster states in the full system.

The third statement follows from the fact thatok=0
2m−1dkz

k is
a polynomial with one root on the unit circlescorresponding
to a real value ofud, and anotherm−1 pairs of roots which
may or may not be on the unit circle. If all of these are on the
unit circle, and hence there arem−1 stable solutions to

f̃ hakj,hbkjsud=0, then the arguments of Sec. 5 off10g can be
used to prove the existence ofm-cluster solutions in the full
system.

We mention that a relationship between Fourier modes
and clustering has been pointed out previously inf1g, al-
though in a different context.

IV. LOSS OF STABILITY OF THE SYNCHRONIZED
STATE

In globally coupled systems, barring the uninteresting
case that a synchronized state loses stability on its own sub-
space, generically, the synchronized state loses stability in a
degenerate transcritical bifurcation. In this bifurcation, a
large number of cluster states collide and the synchronized
state loses stability. The bifurcation is discussed in some de-
tail in f6,10g. It is shown that at the bifurcation, states from
every two-cluster subspace collide with the synchronized
state, but theory inf16g implies that with the possible excep-
tion of totally symmetric clusters, these are all unstable both
before and after the bifurcation. The situation is shown sche-
matically in Fig. 1. We will call this bifurcation the DT bi-
furcation.

The DT bifurcation in the full system manifests itself as a
transcritical bifurcation of the base solution in the reduced
model. For phase systems this is particularly simple to char-
acterize: basically an unstable solution collides with the base
solution and exchanges stability with itsthe reader can
glance ahead to Fig. 5 for exampled.

It is an interesting observation that frequently AC states
are born shortly before the DT bifurcation, and may attract
the majority of phase space in the region near the bifurcation.
We now calculate explicitly when AC states states can be
expected to exist near the DT bifurcation point for a phase
system with two Fourier modes.

The reduced model can be written

u̇ = a1sinu + b1scosu − 1d + a2sinu + b2scosu − 1d ; Fsud.

s13d

A transcritical bifurcation of the base solution occurs
whenF8s0d=0, i.e., ata1+2a2=0. sSee any textbook on bi-
furcation theory such asf17g for the nondegeneracy condi-
tions on this bifurcation.d As in Sec. III, we rewrite the sys-
tem in complex form and find thatFsud has zeros when
Pszd=o j=0

4 cjz
j has zeros wherez=eiu, c4=b2/2+a2/ s2id, c3

=b1/2+a1/ s2id, c2=−sb1+b2d, c1=c3, andc0=c4. Because of
the root at unity, we can always write

Pszd = sz− 1dsc4z
3 + c5z

2 + c6z− c0d, s14d

wherec5=c3+c4 andc6= c̄5. It takes a little algebra to check
that at bifurcationsi.e., whena1+2a2=0d,

Pbifszd = sz− 1d2sc4z
2 + c7z+ c4d, s15d

wherec7=b1/2+b2. Again following Sec. III, we are inter-
ested in when the quadratic polynomialc4z

2+c7z+c4 has two
zeros on the unit circle. Indeed, the two solutions to this
polynomial are

s− c7 ± Îc7
2 − 4uc4u2dc̄4

2uc4u2
. s16d

The reader can check that there are two distinct solutions on
the unit circle whenc7

2−4uc4u2,0, which translates to

FIG. 1. A schematic representation of a degenerate transcritical
sDTd bifurcation. The horizontal line represents the synchronized
solution which loses stability. The other straight lines represent un-
stable solution branches. A possibly stable symmetric branch is also
shown.
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a2
2 . b1

2/4 + b1b2. s17d

Thus for these parameter values there will be stable AC
states present when the synchronized state undergoes the DT
bifurcation f21g. A sketch of the shape of this region in
b1-b2 space for fixeda2 is shown in Fig. 2.

Clearly there is a large region of parameter space includ-
ing the area aroundb1=b2=0 sthis point corresponds to an-
tisymmetric functionsd where there are stable AC states.
Thus it is a frequent occurrence to get stable two-cluster
states in the system at the moment of the DT bifurcation.
Moreover, the parameter set where this is so can be calcu-
lated explicitly for a phase system coupled by two Fourier
modes.

V. BIFURCATIONS CREATING AC STATES

AC states exist whenever there is a nontrivial stable solu-
tion in the reduced model. For phase systems, this means that
such states are created whenPszd in Eq. s12d has a double
root on the unit circle distinct from the root at unity. For the
two Fourier mode system,Pszd can then be written

Pszd = sz− 1dsz− eitd2spz− qd s18d

with the four conditions

p = c4, s19d

q = c0e
−2it , s20d

− s2peit + qd = c3 + c4, s21d

pe2it + 2qeit = c2 + c3 + c4. s22d

First, we can confirm, as expected, that the fourth root,q/p,
is also on the unit circle sincec0=c4. We can also check that
the last two equations actually correspond to the same con-
dition. The third equation can be rewritten as

− s2c4e
it + c4e

−2itd = c3 + c4. s23d

In this complex equation,t parametrizes a codimension-1
surface through parameter spacesi.e., a1,a2,b1,b2 spaced,

and portions of this surface lying in the region of stability of
the synchronized solutionsi.e., wherea2

2.b1
2/4+b1b2d rep-

resent bifurcations creating stable asymmetric cluster solu-
tions in the full system.

We will refer to the bifurcation in which AC states are
created as the AC bifurcation to distinguish it from the DT
bifurcation. Equations23d will be used to characterize the
AC bifurcation curve for the system to be studied below.

VI. A PARTICULAR SYSTEM

A. Description of the system

We now apply the theory developed above to a particular
system of phase oscillators studied inf15g. In that reference,
the authors make the correct and important point that nu-
merical simulations of systems of globally coupled identical
oscillators can converge to linearlyunstablestates in the ab-
sence of noise. This phenomenon of “slow switching” has
been further explored inf4,18g and the existence of structur-
ally stable heteroclinic cycles in systems with symmetry
shown. Here we find that apart from the slow-switching
states, the system studied inf15g also contains large param-
eter sets where asymmetric clustering behavior occurs, in
regions where the synchronized state is also stable.

The system in question is

ḟi = v + g
1

No
j=1

N

h− sinsfi − f j + ad + r sinf2sfi − f jdgj,

s24d
i = 1,…,N,

where fi P f0,2pd, N is the number of oscillators, and
v ,r ,g, anda are parameters. The reader can check that this
is of the general forms5d with two Fourier modes.v can be
eliminated by shifting to rotating coordinates via the coordi-
nate changefi →fi −vt for eachi, and so from the outset we
set v=0. Subsequently, if time is appropriately rescaledst
→gtd, theng is eliminated, so we setg=1, to get the sim-
plified form

ḟi =
1

N
o
j=1

N

h− sinsfi − f j + ad + r sinf2sfi − f jdgj

s25d
i = 1,…,N.

This system has full permutation symmetry, and possesses a
stable synchronized state whilea,ac;arccoss2rd. At a
=ac, a DT bifurcation occurs.

B. Construction of the reduced model

We simply follow the schema laid out in Sec. III. Equa-
tion s25d has the synchronized solutionfistd=−sinsadt, i
=1,… ,N, which can be substituted back to give

ḟ = − sinff + sinsadt + ag + r sinh2ff + sinsadtgj. s26d

Rotating out time dependence by substitutingu=f+sinsadt
gives us the autonomous equation

FIG. 2. A plot showing the regionb1
2/4+b1b2,1 in which we

can expect asymmetric clustering.
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u̇ = − sinsu + ad + r sins2ud + sina f; f r,asudg. s27d

This equation always has the fixed pointu=0, which we call
the base solution. As the system is periodic, generically all
its solutions come in pairssexcept at bifurcationsd and so it
also has an unstable solution. From Sec. II, the question is
whether it has any further pairs of solutions.

C. Analysis of the model and the full system

An example of a plot off r,asud is shown in Fig. 3. We
have chosen parameter values where the reduced model does
indeed display a second stable solution, and even without
any analysis, a quick exploration ofr-a parameter space sug-
gests that this is not uncommon.

Our next task is to characterize completely the region of
parameter spacesi.e., r-a spaced where AC states exist in this
system. Followingf15g, we explore 0, r ,0.5, 0,a,ac.
We first use techniques from Sec. V to calculate that the AC
bifurcation takes place on the line parametrized by

a = − cotS 2 sint + sins2td
1 + 2 cost − coss2tdD , s28d

r = −
sina

2 sint + sins2td
. s29d

For thoroughness we then pick values ofr and a in the
relevant region of phase space and use the methods illus-
trated in Sec. III to confirm thatf r,a has nontrivial stable
zeros for these parameter values. The details are sketched in
Appendix A. In Fig. 4, we have plotted the AC bifurcation
line, and parameter values where the reduced model has a
second stable state, and there are hence AC solutions in the
full system.

To get a flavor for what this diagram means, we explore a
few regions of parameter space in the reduced model. First,
we look at what happens when we cross the DT bifurcation
line in a region where there are no asymmetric clusters. At

r =0.25, the DT bifurcation occurs ata=p /3.1.047. In Fig.
5, we see what happens locally to the base solution in the
reduced model at the DT bifurcation: An unstable state
exchanges stability with the base solution in a transcritical
bifurcation.

In this particular instance, there is no more global behav-
ior to comment on—the unstable solution which exchanges
stability with the base solution is the only other real zero of
f r,a.

Although the local picture remains the same, the global
picture becomes more interesting if we fixr =0.45 and cross
through the AC and DT bifurcation lines in succession. Fig-
ure 6 shows what happens. First a new pair of solutions is
born in the AC bifurcation, and then the unstable solution
collides with the base solution at the DT bifurcation. Trans-
lating to the full model, first pairs of AC states are born.
Then the newly born unstable clusters collide with the syn-
chronized state at the DT bifurcation. We believe that this
scenario is very common in systems of globally coupled os-
cillators and have observed it on other occasionsf10g.

FIG. 3. A plot of f0.45,0.41sud in the region near zero, showing the
existence of the base solution atu=0, and another stable solution
betweenu=0.3 andu=0.4. The value ofa is such that we are in the
region shortly before the synchronized solution loses stability
swhich happens ata.0.451 in this cased.

FIG. 4. A scatter plot of the parameter values inr-a space where
the reduced model has a second stable solution and where there
must be stable AC states in the full system. Also plotted is the DT
bifurcation linea=arccoss2rd sthick lined, and the relevant portion
of AC bifurcation linesdashed lined. See Appendix A for details of
the calculations. The second-order bifurcation point where the AC
and the DT bifurcation lines meet can be calculated using Eq.s17d
to be atr =Î1/8.0.354,a=p /4.

FIG. 5. Plots off0.25,asud for a=1.00, 1.02, 1.04, 1.06, 1.08, and
1.10 in a region nearu=0. As we move through the sequence, the
synchronized state loses stability. This manifests in the reduced
model as a transcritical bifurcation of the base solution.
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The final scenario in Fig. 4 is what happens when we pass
through a region where AC bifurcations occur, but do not
shortly precede the DT bifurcation. If we fixr at 0.3 and
increasea from 0.77 to 0.8, we pass through an AC region,
getting two saddle-node bifurcations as shown in Fig. 7.
Thus AC states are created and destroyed while the synchro-
nized solution remains stable throughout.

D. Numerical simulations

For completeness, we confirm numerically that stable
clusters exist in the full system when there is multistability in
the reduced system. Atr =0.3,a=0.79, it is easy to compute
that f0.3,0.79sud has a stable zero atus.1.188, and hence that
there are stable AC solutions in the full model with a spacing
between clusters of about 1.188. We simulate the full model
at these parameter valuesf22g. In this particular instance, the
system almost always converges to AC states from random
initial conditions as illustrated in Fig. 8, even though the
synchronized solution is stable. This is a physically interest-
ing situation, where the system prefers a few oscillators to
perform a motion different from the majority, but cannot

support a significant number of oscillators in the smaller
cluster.

If we stepa up, at some point the AC solutions disappear
and we find the synchronized solution. The way this happens
is depicted in Fig. 9.

It is worth asking how closely the AC-bifurcation line
corresponds to the moment of creation of asymmetric clus-
ters in a large but finite system. For this purpose we simu-
lated the system forN=200 and looked for stable asymmet-
ric clusters containing a single oscillator in the smaller
cluster in regions close to the AC bifurcation. The results of
this simulation are shown in Fig. 10. For parameter values
close to the AC bifurcation line, the asymmetric cluster states
are easily found. It is worth noting that for parameter values
actually on the bifurcation line, only the synchronized state
is found, suggesting that the bifurcation which creates the
states with one oscillator separated from the rest happens to
the right of the AC bifurcation line.

VII. FURTHER COMMENTS ON THE LOSS OF
STABILITY OF THE SYNCHRONIZED STATE

We have made some further observations about the basin
of attraction of the synchronized state as we approach the DT

FIG. 6. Plots off0.45,asud for a=0.38, 0.41, 0.44, 0.47, 0.50, and
0.53 in a region nearu=0. As we move through the sequence, first
a stable and unstable pair of solutions is born, and then the newly
formed unstable solution collides with the synchronized state and
exchanges stability with it.

FIG. 7. Plots off0.3,asud for a=0.77, 0.78, 0.79, and 0.80. As we
move through this sequence of parameter values, there are two
saddle-node bifurcations during which a pair of solutionssone of
which is stabled is created, and then a pair is destroyed.

FIG. 8. Oscillators with random initial conditions coalescing to
an asymmetric two-cluster state. Parameter values arer =0.3, a
=0.79. Time steps have been chosen to be approximately one rota-
tion sfor clarityd. In this case,N=200 and the smaller cluster con-
tains three oscillators. It is interesting to note how excess oscillators
leave the smaller cluster as it forms. We can say that the cluster
“supports” a maximum number of oscillators, and any excess oscil-
lators above this number are expelled.

FIG. 9. An AC state losing stability to the synchronized solu-
tion. r =0.3. a starts at a value of 0.796 and each horizontal line
represents an increase ina of 0.002. We see that between 0.806 and
0.808, the cluster state loses stability.
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bifurcation. These observations are based on a large number
of numerical simulations. There appear to be two distinct
scenarios in the lead up to bifurcation. The first is that al-
though the synchronized state becomes more and more
weakly attracting, it still appears to attract the entirety of
phase space, right up to the moment of bifurcation. In this
scenario, after bifurcation it is the attractors which include
stable heteroclinic cycles and contain unstable cluster states
in their closure, rather than stable cluster states, which tend
to be foundf4,18g. We speculate that the bifurcation is a
transcritical-homoclinic bifurcation as described inf6g.

The other scenario is that the basin of attraction of the
synchronized state shrinks as bifurcation approaches. Shortly
before bifurcation, it becomes much more likely that we will
find stable cluster states rather than the synchronized state, to
the point where, even in a region where we know the syn-
chronized state to be stable, a thousand sets of initial condi-
tions do not find it. In this scenario, after bifurcation it is
stable cluster states which tend to be found.

VIII. BREAKING THE SYMMETRY

Real applications will rarely consist of identical oscilla-
tors with entirely symmetrical coupling. In some situations,
breaking the symmetry or adding noise has fundamental ef-
fects on the behavior of globally coupled systemsf5,15,19g,
often destroying various invariant structures in phase space.
Hence it is a valid question to ask what happens to the sce-
narios described above if the symmetry is broken. In reply to
this question, we note first that all the states we describe
away from the bifurcation points, in particular the synchro-
nized state and asymmetric cluster states, are hyperbolic. We
thus expect these states to survive for sufficiently small per-
turbations of the system. What we mean is that symmetry
broken versions of these statesswhich continue to be peri-
odic, but where there is now some phase spread within each
clusterd continue to exist.

Further, although the degenerate transcritical bifurcation
of the synchronized state will be destroyed by the symmetry
breakingsand replaced with a large number of saddle-node
bifurcationsd, the bifurcations giving rise to asymmetric clus-
ter statesswhich are saddle-node bifurcationsd will survive in
one-parameter families. Of course there is the practical ques-
tion of what “sufficiently small perturbations” means. In or-
der to get some sense of an answer, we have simulated a
version of Eq.s24d with nonidentical oscillators,

ḟi = v + ei + g
1

No
j=1

N

h− sinsfi − f j + ad + r sinf2sfi − f jdgj,

s30d
i = 1,…,N.

The quantitiesei—perturbations to the normal frequency of
the oscillators—are uniformly distributed on intervals of the
form f−10−D /2 ,10−D /2g. The parameterD thus controls the
size of the perturbations. As before, we chooseN=200. At
parameter valuesr =0.3,a=0.79, where asymmetric clusters
coexist with the synchronized state, and in fact attract the
majority of phase spacessee Sec. VI Dd, we find as expected
that for sufficiently small perturbationssi.e., largeDd, the
asymmetric cluster states continue to exist and to dominate
phase space.

But as we move away from perfect symmetry, various
trends become apparent. To understand them, consider the
particular bifurcation giving rise to a set of cluster states with
two oscillators in the smaller cluster. There areNsN−1d such
cluster states, and with full permutation symmetry, theNsN
−1d bifurcations creating these clusters occur at the same
parameter value. However, with broken symmetry—
assuming none of the bifurcations is destroyed—they will
occur at slightly different parameter values. This means that
at a given parameter value, different states will be more or
less stable, in the sense of being closer to or further from
bifurcation. Thus, we expect the symmetry breaking to mean
that some clusters are favored over others—in other words,
certain oscillators prefer to be in the smaller cluster.

Numerically this behavior manifests as follows: As the
perturbation increases, the oscillators in the smaller cluster
tend to come from one edge of the distribution. Because the
smaller cluster lies to the right of the larger one at these
parameter values, oscillators whose perturbed frequencies
cause them to move in this direction are more likely to end
up in the second cluster than those whose perturbations in-
cline them to move in the opposite directionf23g.

To make this notion more precise, we defineqi
=2ei /10−D for the ith oscillator drawn from a distribution
parametrized byD, andQsCd=s1/uCudo jPCqj as the average
q for a clusterC, whereC is the index set of the oscillators in
the cluster. Then aQ value near 0 for oscillators in the
smaller cluster would represent unbiased selection of oscil-
lators from the distribution to make up the cluster, whileQ
values differing from 0 would represent a bias in the choice
of oscillators to form the smaller cluster. What happens is
that as the symmetry is broken, oscillators which form the
smaller cluster are increasingly chosen from one end of the
distribution. This trend is illustrated in Fig. 11.

FIG. 10. The crosses indicate parameter values at which simu-
lations of the full system withN=200 were carried out and stable
asymmetric cluster states containing a single oscillator in the
smaller cluster were found. The AC and DT bifurcation lines are
shown for reference.
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A second observation is that as the perturbation increases,
the average size of the smaller cluster increases, as illustrated
in Fig. 12.

We can interpret these trends as follows.
sid As we break the symmetry of the system, cluster states

with certain oscillators in them are more stable and attract
more of phase space.

sii d The greater stability of these states allows them to
support a larger number of oscillators.

IX. GENERAL REMARKS AND CONCLUSIONS

It is in general hard to characterize completely the behav-
ior of systems of coupled oscillators, due largely to the high
dimension of the state space. Due to its simplicity and physi-
cal importance, a large emphasis has traditionally been
placed on synchronization. However, we have shown that
asymmetric clustering is another phenomenon which is
simple enough to be amenable to analysis—in fact, for
simple systems of oscillators, asymmetric clustering behav-

ior can be completely characterized. It is important both be-
cause it is often associated with the loss of stability of the
synchronized state, and because such behavior could easily
sand wronglyd be attributed to noise or experimental error in
a real physical situation.

We have also seen numerically that the phenomenon of
asymmetric clustering survives significant destruction of the
symmetry of the system, although particular asymmetric
clusters become preferred over others.

It is worth noting that although this paper is about asym-
metric clustering, numerically we can often construct more
symmetric clusters simply by moving oscillators from the
larger to the smaller cluster. This process sometimes leads to
the breakdown of the cluster state, but not always. In fact, the
proportion b of oscillators in a cluster can be treated as a
parameter like any other from the point of view of exploring
clustering.
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APPENDIX A: FINDING THE AC BIFURCATION
AND FINDING ZEROS OF fr,a

We can quite easily calculate when an AC bifurcation
takes place in Eq.s24d using the general technique in Sec. V.
First note that for this system,a1=−cosa, b1=−sina, a2=r,
andb2=0. Soc3=−sina /2 andc4=−ir /2.

The AC bifurcation conditionfEq. s23dg can be written as

2ir scost + i sin td − ir fcoss2td − i sins2tdg

= − sina + iscosa − rd. sA1d

Equating real and imaginary parts and a little manipulation
leads to

a = − cotS 2 sint + sins2td
1 + 2 cost − coss2tdD , sA2d

r = −
sina

2 sint + sins2td
. sA3d

These expressions are used to plot the portion of the curve
shown in Fig. 4.

We now sketch briefly how we confirm the behavior of
f r,a for the values ofr anda as plotted in Fig. 4.

1. We use the complex representations of sinu and cosu
to get thatf r,a=0 when

0 = − irz4 + Mz3 + 2Sz2 − Pz+ ir sA4d

=sz− 1ds− irz3 + Qz2 + Rz− ir d, sA5d

where z=eiu, C=scosad /2, S=ssinad /2, M =siC−Sd, P
=siC+Sd, Q=sM − ir d, R=sP− ir d. The root of 1 corre-
sponds to the root of zero in the original equation forf r,a.

FIG. 11. Variation of the averageQ value of the oscillators in
the smaller cluster as the symmetry is brokensvia the parameterDd.
Each point is based on 1000 simulations with oscillator initial con-
ditions drawn from a uniform distribution on the circle. For each
value ofD, there are one or two strongly preferred cluster sizes. For
perturbations greater than the values shown, the clusters start to blur
together, and there can be some ambiguity about which cluster a
particular oscillator belongs to.

FIG. 12. Variation of the average size of the smaller cluster,
based on the same numerical experiments as in Fig. 11.
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2. The cubic polynomial that remains on the right-hand
side of Eq.sA5d after factoring generically has three distinct
roots in the complex plane, which we callz1,z2,z3. We solve
for these roots using a symbolic algebra packagesgiving a
long and unwieldy expression for each root in terms ofr and
ad.

3. From arguments in Sec. III to eachzi, there corre-
sponds a uniqueui P f0,2pd. The points we plot in Fig. 4 are

those values ofr and a where all threeui are realsi.e., all
threezi lie on the unit circle.d

Note that from Sec. III there can be no more than one
nontrivial stable real root off r,a. Hence we can only predict
asymmetric two-cluster states and never three-cluster states
for this systemswhich is not to say that three-cluster states
cannot in general existd. If more Fourier modes were incor-
porated into the coupling, this situation would change.
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