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Strongly asymmetric clustering in systems of phase oscillators
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In this paper, we look at clustering in systems of globally coupled identical phase oscillators. In particular,
we extend and apply techniques developed earlier to study stable clustering behavior involving clusters of
greatly differing size. We discuss the bifurcations in which these asymmetric cluster states are created, and how
these relate to bifurcations of the synchronized state. Because of the simplicity of systems of phase oscillators,
it is possible to say a significant amount about asymmetric clustering analytically. We apply some of the theory
developed to one particular system, and illustrate how the techniques can be used to find behavior which might
otherwise be missed.
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I. INTRODUCTION ics. These dynamics need not be close to those of the domi-

Systems of globally coupled identical oscillators, while "ant cluster. In fact, numerical experiments indicate that for
simple to describe, can display a surprising variety of interCertain systems, the minority of oscillators in the smaller
esting behaviof1-5]. These systems have been used a€luster may even be allowed to behave chaotically, while the
models of a number of physical and biological phenomendest behave approximately periodically. In real-world situa-
(see the references ji,6]). Among the collective behaviors tions it would be easy to attribute the existence of a few
which can be observed in these systems are synchronizatiomdividuals which did not synchronize with the pack to dif-
clustering, “splay-phase” states, and chaotic stdgen ferences in the individuals themselves or aysmmetries in the
where the dynamics of individual oscillators do not admitcoupling, but the behavior we describe occurs in systems of
chaotic solutiong7,8]). symmetrically coupled identical oscillators.

The defining feature of globally coupled systems is their We start by commenting on what can be said about asym-
full permutation symmetry, which gives rise to a large num-metric clustering in general systems of globally coupled os-
ber of invariant subspaces. Solutions on these subspaces ailiators. Attention is then focused on the easier case of phase
characterized by the fact that oscillators divide into groups opscillators whose simplicity allows for stronger results.
“clusters” (synchronized solutions are the extreme ¢asel  These results are illustrated via the study of a particular sys-
hence we call these subspachsster subspacedhese sub- tem which has appeared in the literature before. Finally, the
spaces are central to the system’s behavior, and even chaotifects of breaking the symmetry of the system are briefly
behavior is often related in some way to théeng., the cha- explored.
otic attractor contains within its closure unstable cluster
stateq9)). Il. THEORY OF AC STATES

An obvious technique for the study of clustering is to , )
restrict the system to its invariant subspaces, and analyze the Here we briefly summarize the relevant result frono)]
reduced systems so obtained. But such restrictions give ontéhich will be needed. Of interest are system$ajscillators
no idea of behavior transverse to the invariant subspaces. fff the form
[10] we developed some fairly general theory describing 1 N
clustering in globally coupled systems, which included con- x = f(x) + 9(—2 h(x; —X,-)), i=1,..N. (1)
sideration of behavior transverse to the invariant subspaces. Ni=1

Of particular interest were stable, but highly “asymmetric” mav belona to a variety of spaces. for examole Euclidian
cluster states which can sometimes be predicted to exist in’y May ong Y paces, pie
pace, a circle, or a torus. Assuming that there exists some

domain where the synchronized state is also stable, and ar : . . :

often associated with its loss of stability. By “asymmetric” asymptqnc synchrqnlged stajce defined by the soulut«i(()tj

we will mean cluster states with the great majority of oscil-:%(t)'"':l"“ N, it is possible to construct a ‘reduced

lators in one cluster. In this we follow the usage [af,  Model.

where, however, the focus was primarily on the symmetric x=f(x) + g(h(x - dg(1))). 2)

case. Although here we restrict our attention to systems of

ordinary differential equations, recently asymmetric clusterormally, what is done to construct this second nonautono-

ing has been studied and found to be important in systems dhous system is simply to replace eaghexceptx; with

globally coupled map§l11,12,. do(t). pp(t) is of course only unique up to a shift in the
Asymmetric cluster(AC) states have a certain intuitive origin of time. Trivially, Eq.(2) always has the solutior

appeal, because while the majority of oscillators perform= ¢o(t). But in addition it can be shown that(if) the solution

some motion in unison, a few are allowed different dynam-x;(t)=¢o(t), i=1,...,N in the full system[Eq. (1)] is
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T-periodic and stable, angi) the reduced moddlEq. (2)] ) Nm

possesses a stableperiodic solutionx= i(t) # Py(t), then b=w+=2 > [asink(s - ¢;) + bcosk(d — ¢))],
for sufficiently large systems of oscillators, E@) possesses Ni=1i=1

stable periodic cluster solutions with a small proportion of (5)
the oscillators in one cluster—i.e., highly asymmetric cluster i=1,..,N.

states. This is a specialization and amalgamation of theoremlsnis form includes as a special case the system studied in

3 and 4 in[10].
Note that if the conditions above are mitcan always be ([géf | We can make three general statements about system
%

chosen large enough to ensure that the asymmetric clust
states exist. From now on, if we say that asymmetric clusterﬁ1
exist in a system at a given parameter value, we will mean

that they exist for sufficiently larghl. Moreover, when they a,.3,,by,b, e can calculate analytically whether the sys-

do exist, they can usually be. found numerically, because th?em possesses asymmetric two-cluster states at these values.
proof tells us where to look: the larger cluster performs a (iii) For generaim, there can be AC states with up to

motion close togy(t) while the smaller cluster does some- clusters.

thing C'I‘?Se, to;ﬁ()(tr)]' ol _ | . These statements will allow us to explore in greater detail
_ Qualitatively, the argument goes as follows: As long as itihe pehavior of the particular system we study below. They
is a small proportion of oscillators which perform the unor- 5iqe via the construction and analysis of a reduced model as

thodox motion, causing only a minor disturbance to theéygajled ahove. In order to see this, we first note that(Ex.
mean, these oscillators may be tolerated, and need not ke o o synchronized solution of the form

pulled back into the pack. Perturbation arguments are used to
prove the existence and hyperbolicity of these states. We G =Rt i=1,...,N, (6)
stress that there is no reason to suppose that the motion of _ m . S
the second cluster is close to the motion of the first cluster V1€7€ R=w+ ;b This solution is stable as long as
In general, there will not be an analytic form for the syn- k_=_1kak<_o' At _Ek=1kak:0’ It un_dergqes a degenerate_tra_ns-
chronized solutiondy(t) to use in the reduced model. Al- critical bifurcation to be described in Sec. IV. Substituting

though this might at first seem to be an impediment to ex—the solution into Eq(5) gives

(i) If there is only one Fourier mode in the coupling, i.e.,
=1, there can be no AC states.
(i) For m=2, given a set of parameter values

ploring the model in the search for AC behavior, this is only . m

apparent. To see why, we simply note tlfa{t) is by defi- bd=w+ D [asink(¢ — RY + bcosk(p—RY].  (7)

nition a solution of the system=f(x) +g(h(0)). The reduced k=1

model is then a projection of the simple skew product.l.he coordinate changé= ¢—-Rt gives

system, g g
m

y=1(y) +9(h0)), S 6= [asinko+ b(coskd— 1)1 = fiay (6,  (8)
k=1
x=1(x) +g(h(x-y)). (4)

which is the reduced model for this system. This is a one-
The analysis above has so far been about the existence dimensional autonomous system, whose only solutions can
two-cluster states. It can, however, be extended to the case bé fixed points. Since it is periodic, these fixed points will
more than two clusterfd0]. Basically, given the existence of generically come in stable and unstable pairs, except at bi-
k stable solutions in the reduced model, we can prove théurcation valueg20]. From the point of view of asymmetric
existence of stable asymmetriecluster states in the full clustering, we are interested in the zerosfin}'{bk}(e). The

system. next stage is to use complex representations of sin and cos to
get
ll. PHASE SYSTEMS m (ek? - g7ko) (€9 + g7ko)
. _ fragiog(6) = 2 [ak : + by -1,
Note that up to this point, the results have applied to k=1 2i 2
arbitrary systems of identical globally coupled oscillators. (9)

Sometimes, however, under the assumption of sufficiently
weak coupling, systems of oscillators can be described usinghich has zeros at the same values as
a single phase variable for each oscillatb8]. In this case, m (mek06 i(m
the one-dimensionality of the oscillators allows us to say 7 0= (¢ -€ %)
more about asymmetric clustering than in the general case. (@b} = | & 2i
Although the assumptions needed to justify the phase ap- {8 4 im0
proximation cannot always be justified, phase oscillators +b ((e te ) _eim0>:| (10)
have been used to model a number of biological phenomena, K 2 '
including neurong14]. _ -
Consider a system of phase oscillators where the couplingettingz=€’, we see thaf,; () can be written as a
includes Fourier modes up to timeth mode, polynomial inz of the form
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2m

P2 =2 ¢ (12)
k=0

for complexc,. Moreover, it has one solution at 1, so that
it can be written

2m-1
P(2=(z-1 X dZ (12)
k=0
- _ model states bif .

The polynomial=2™ 'd,Z has 2n-1 roots {z}i=1 . om-1, iN \furcation parameter
general distinct. LeP C C be defined as any vertical strip of
the form {Z:E C Re(;) e[nm,(n+2)m)}. Then the map FIG. 1. A schematic representation of a degenerate transcritical
z—e”:P— (s invertible, and hence to each of the roats (DT) bifurcation. The horizontal line represents the synchronized
there is a uniqué, € P such thate'%=z. solution which loses stability. The other straight lines represent un-

Returning to the equatio?]{a Vb }(9) =0. we know from stable solution branches. A possibly stable symmetric branch is also
K10k !

the geometry used to define it that its solutions generically?"oWn-

come in pairs which are either both real or both complex. _ o _ _

These correspond to pairs nfeither on or off the unit circle. The DT bifurcation in the full system manifests itself as a

Thus there are always two real rootsttQk (6) with m  transcritical bifurcation of the base solution in the reduced

3o} L - . §

—1 further pairs of roots, in general complex model. For phase systems this is particularly simple to char
If m=1. this means th’at there can be no sfable 76105 apa?f:terize: basically an unstable solution collides with the base

from the trivial one. Hence we can never predict AC statessomtIon and exchanges stability with ithe reader can

when there is only one Fourier mode in the coupling. glalrtwi :L]ei?(tje:gsfilr?. iézgf\fai?gﬁlihat frequently AC states
If m=2, 2% 'dZ is a cubic polynomial, and can be 9 quently

solved analytically to give the roots, z,, andzs, from which f\hre bOF” ihorftlyhbefore the .D1t'hb|furc'at|on, antﬂ n;a"’.‘fy attrtgct
we can calculat#,, 6,, and6;. One 6, must be real, but if the € mayority of pnase space In Ine region neartnhe biiurcation.
other pair are also real, then there are further stable zeros. We now calculfate explicitly whe_n AC states states can be
the base solution af=0 is also stable, then there will be expected to exist near the DT bifurcation point for a phase
stable asymmetric two-cluster states in the full system. sys_ltﬁm W('jth tV\éjO Fo(thrlle ' mok;jes. it
The third statement follows from the fact tig§™ 'd,z" is € reduced modef can be written

a polynomial with one root on the unit circleorresponding  , _ _ _. _ ; P
to a real value o®), and anothem-1 pairs of roots which 0=a,sin 6+ b,(Cos6~ 1) +a,sin 6 + by(cos - 1) = F(6).
may or may not be on the unit circle. If all of these are on the (13

unit circle, and hence there are-1 stable solutions to A transcritical bifurcation of the base solution occurs

?{ak},{bk}(a)zov then the arguments of Sec. 5[d0] can be  whenF’(0)=0, i.e., ata,+2a,=0. (See any textbook on bi-
used to prove the existence wkcluster solutions in the full ~ furcation theory such al7] for the nondegeneracy condi-

system. tions on this bifurcation.As in Sec. Ill, we rewrite the sys-
We mention that a relationship between Fourier modesem in complex form and find tha(#) has zeros when
and clustering has been pointed out previoushy{ih al- P(z):Efzocjzj has zeros where=€?, c,=b,/2+a,/(2i), c;
though in a different context. =b,/2+a,/(2i), c,=—(b; +b,), ¢;=C5, andcy=c,. Because of
the root at unity, we can always write
IV. LOSS OF STABILITY OF THE SYNCHRONIZED P(2) = (2= 1)(csZ’ + csZ° + G2~ C), (14
STATE

wherecs=c;+c, andcg=cs. It takes a little algebra to check

In globally coupled systems, barring the uninterestingthat at bifurcation(i.e., whena; +2a,=0),
case that a synchronized state loses stability on its own sub- o2 —
space, generically, the synchronized state loses stability in a Poit(2) = (2= 1)%(C4Z° + CrZ+ Cy), (15
degenerate transcritical bifurcation. In this bifurcation, awherec,=b,/2+h,. Again following Sec. IIl, we are inter-

large number of cluster states collide and the synchronizegsted in when the quadratic polynomia#?+c,z+c, has two
state loses stability. The bifurcation is discussed in some dezeros on the unit circle. Indeed, the two solutions to this
tail in [6,10]. It is shown that at the bifurcation, states from polynomial are

every two-cluster subspace collide with the synchronizeAJ

state, but theory if16] implies that with the possible excep- (- cr £ \C2 - 4cyldc,
tion of totally symmetric clusters, these are all unstable both 2lca? : (16)

before and after the bifurcation. The situation is shown sche-
matically in Fig. 1. We will call this bifurcation the DT bi- The reader can check that there are two distinct solutions on
furcation. the unit circle whercs—4/c,|?< 0, which translates to
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4 ' ' and portions of this surface lying in the region of stability of
the synchronized solutiofi.e., wherea§> bf/4+blb2) rep-
resent bifurcations creating stable asymmetric cluster solu-

2 tions in the full system.

v4+bb. <1 We will refer to the bifurcation in which AC states are
&0 1 172 created as the AC bifurcation to distinguish it from the DT
bifurcation. Equation(23) will be used to characterize the
AC bifurcation curve for the system to be studied below.
-2
VI. A PARTICULAR SYSTEM
o ) 0 2 4 A. Description of the system

b

1

We now apply the theory developed above to a particular
FIG. 2. A plot showing the regiob§/4+b1b2<1 in which we  system of phase oscillators studied ib]. In that reference,
can expect asymmetric clustering. the authors make the correct and important point that nu-

merical simulations of systems of globally coupled identical
2 2 oscillators can converge to lineanystablestates in the ab-
3 > by/4 +byb,. (A7 sence of noise. This %henomenr(d)m] of “slow switching” has
Thus for these parameter values there will be stable Adbeen further explored if¥,18] and the existence of structur-
states present when the synchronized state undergoes the Rify stable heteroclinic cycles in systems with symmetry
bifurcation [21]. A sketch of the shape of this region in shown. Here we find that apart from the slow-switching
b,-b, space for fixedn, is shown in Fig. 2. states, the system studied[it5] also contains large param-
Clearly there is a large region of parameter space includeter sets where asymmetric clustering behavior occurs, in
ing the area arount,;=b,=0 (this point corresponds to an- regions where the synchronized state is also stable.
tisymmetric functions where there are stable AC states. The system in question is
Thus it is a frequent occurrence to get stable two-cluster LN
states in the system at the moment of the DT bifurcation.  _ N i A : o
Moreover, the parameter set where this is so can be calcu- $= w+gN§1{ SNy = g+ a) +1 sin2(¢i = 4)) 1},
lated explicitly for a phase system coupled by two Fourier (24)
modes. i=1.. N,

where ¢, €[0,27), N is the number of oscillators, and
V. BIFURCATIONS CREATING AC STATES w,r,g, anda are parameters. The reader can check that this
AC states exist whenever there is a nontrivial stable solulS Of the general forniS) with two Fourier modesw can be

tion in the reduced model. For phase systems, this means thgiminated by shifting to rotating coordinates via the coordi-
such states are created whife) in Eq. (12) has a double Nate change@,— ¢—wt for eachi, and so from the outset we
root on the unit circle distinct from the root at unity. For the S€t@=0. Subsequently, if time is appropriately rescaled

two Fourier mode systenR(z) can then be written —gt), theng is eliminated, so we saj=1, to get the sim-
‘ plified form
P(2) = (z- 1)(z-€Y%(pz-q) (18) L
with the four conditions &= NE {-sin(¢ — ¢ + @) + 1 sin2(¢ — )]}
=1
p=Cy, (19 (25)
. i=1,...,N.
q=coe™™, (20)

This system has full permutation symmetry, and possesses a
stable synchronized state while<a.=arcco$2r). At «

(2pe’ +q) = cg+ ¢y, (1) =a,, a DT bifurcation occurs.

pet+2qdt=c, + c3+ ¢y, (22)
) ) B. Construction of the reduced model
First, we can confirm, as expected, that the fourth rqbp,

is also on the unit circle sinag=c,. We can also check that __We simply follow the schema laid out in Sec. lll. Equa-
the last two equations actually correspond to the same corfion (25 has the synchronized solutiog(t)=-sin(a)t, i

dition. The third equation can be rewritten as =1,...,N, which can be substituted back to give
— (2c,€" + Coe ) = ¢y + . (23) ¢=—-si¢+sin(a)t+a] +rsin{2[ ¢+ sin(a)t]}. (26)

In this complex equationt parametrizes a codimension-1 Rotating out time dependence by substitutiirge+sin(a)t
surface through parameter spage., a;,a,,b;,b, space, gives us the autonomous equation
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FIG. 4. A scatter plot of the parameter values-ar space where
FIG. 3. Aplot 0ffo 45 0 4{6) in the region near zero, showing the the reduced model has a second stable solution and where there
existence of the base solution @0, and another stable solution Must be stable AC states in the full system. Also plotted is the DT
betweend=0.3 andd=0.4. The value ofx is such that we are in the Difurcation line«=arccog2r) (thick line), and the relevant portion

region shortly before the synchronized solution loses stability®f AC bifurcation line(dashed ling See Appendix A for details of
(which happens at=0.451 in this case the calculations. The second-order bifurcation point where the AC

and the DT bifurcation lines meet can be calculated using(Eq.
) to be atr=y1/8=0.354,a=7/4.
6=-sin(0+a)+rsin20) +sina [=f, (0)]. (27)

) ] ) ] . r=0.25, the DT bifurcation occurs at=7/3=1.047. In Fig.
This equation z_;\Iways has the flxed_ poeht_O, \_/vhlch we call 5, we see what happens locally to the base solution in the
the base solution. As the system is periodic, generically alfequced model at the DT bifurcation: An unstable state
its solutions come in pairgexcept at bifurcationsand so it exchanges stability with the base solution in a transcritical
also has an unstable solution. From Sec. Il, the question igifyrcation.
whether it has any further pairs of solutions. In this particular instance, there is no more global behav-
ior to comment on—the unstable solution which exchanges
stability with the base solution is the only other real zero of
fr o

An example of a plot off, ,(6) is shown in Fig. 3. We Although the local picture remains the same, the global
have chosen parameter values where the reduced model dga@sture becomes more interesting if we fix0.45 and cross
indeed display a second stable solution, and even withouhrough the AC and DT bifurcation lines in succession. Fig-
any analysis, a quick exploration ofa parameter space sug- ure 6 shows what happens. First a new pair of solutions is
gests that this is not uncommon. born in the AC bifurcation, and then the unstable solution

Our next task is to characterize completely the region ofcollides with the base solution at the DT bifurcation. Trans-
parameter spadge., r-« space where AC states exist in this lating to the full model, first pairs of AC states are born.
system. Following 15], we explore 6<r<0.5, 0<a<a..  Then the newly born unstable clusters collide with the syn-
We first use techniques from Sec. V to calculate that the AQhronized state at the DT bifurcation. We believe that this

C. Analysis of the model and the full system

bifurcation takes place on the line parametrized by scenario is very common in systems of globally coupled os-
) ) cillators and have observed it on other occasidir¥.
2 sint + sin(2t)
a=— co( ) , (28) 3
1+ 2 cost — cog2t) 10520
SN« BN NG
=73 sint + sin(2t) (29) 1
For thoroughness we then pick values rofand « in the =3
relevant region of phase space and use the methods illus- ]
trated in Sec. Il to confirm thaf, , has nontrivial stable il 0
zeros for these parameter values. The details are sketched in e i
Appendix A. In Fig. 4, we have plotted the AC bifurcation
line, and parameter values where the reduced model has a
second stable state, and there are hence AC solutions in the 02 o 0 0.2

full system.

To get a flavor for what this diagram means, we explore a F|G. 5. Plots 0ffg.25,(6) for a=1.00, 1.02, 1.04, 1.06, 1.08, and
few regions of parameter space in the reduced model. Firsi, 10 in a region neaé=0. As we move through the sequence, the
we look at what happens when we cross the DT bifurcatiorsynchronized state loses stability. This manifests in the reduced
line in a region where there are no asymmetric clusters. Aimodel as a transcritical bifurcation of the base solution.
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FIG. 8. Oscillators with random initial conditions coalescing to
FIG. 6. Plots off 45,(6) for @=0.38, 0.41, 0.44, 0.47, 0.50, and an asymmetric two-cluster state. Parameter valuesr a@3, a

0.53 in a region neaf=0. As we move through the sequence, first =0.79. Time steps have been chosen to be approximately one rota-

a stable and unstable pair of solutions is born, and then the newltjon (for clarity). In this caseN=200 and the smaller cluster con-

formed unstable solution collides with the synchronized state andins three oscillators. It is interesting to note how excess oscillators

exchanges stability with it. leave the smaller cluster as it forms. We can say that the cluster

“supports” a maximum number of oscillators, and any excess oscil-

The final scenario in Fig. 4 is what happens when we pasléEltOIrs above this number are expelled.

through a region where AC bifurcations occur, but do notsupport a significant number of oscillators in the smaller

shortly precede the DT bifurcation. If we fixat 0.3 and cluster.

increasex from 0.77 to 0.8, we pass through an AC region,  If we stepa up, at some point the AC solutions disappear

getting two saddle-node bifurcations as shown in Fig. 7.and we find the synchronized solution. The way this happens
Thus AC states are created and destroyed while the synchrgs depicted in Fig. 9.

nized solution remains stable throughout. It is worth asking how closely the AC-bifurcation line
corresponds to the moment of creation of asymmetric clus-
D. Numerical simulations ters in a large but finite system. For this purpose we simu-

' . lated the system foN=200 and looked for stable asymmet-
For completeness, we confirm numerically that stable

clusters exist in the full system when there is multistabilit inric clusters containing a single oscillator in_the smaller
y _ L Y M ejuster in regions close to the AC bifurcation. The results of
the reduced system. At=0.3, =0.79, it is easy to compute

this simulation are shown in Fig. 10. For parameter values
thatfoz0740) has a stabl_e zero #=1.188, and _hence tha_t close to the AC bifurcation line, the asymmetric cluster states
there are stable AC solutions in the full model with a spacin

. re easily found. It is worth noting that for parameter values
between clusters of about 1.188. We simulate the full mode, ctually on the bifurcation line, only the synchronized state

at these parameter valug&?]. In this particular instance, the is found, suggesting that the bifurcation which creates the

§y§tei-m algqst alwayi conveaggs ?. AC8 states frr(])m rsn(:]o ates with one oscillator separated from the rest happens to
initial conditions as illustrated in Fig. 8, even though the . right of the AC bifurcation line.

synchronized solution is stable. This is a physically interest-
ing situation, where the system prefers a few oscillators to VII. FURTHER COMMENTS ON THE LOSS OF
perform a motion different from the majority, but cannot STABILITY OF THE SYNCHRONIZED STATE

We have made some further observations about the basin

004 ' ' of attraction of the synchronized state as we approach the DT
0'02_ e e +
@5 . /\ 0.80 = = &\ W Pa— =
" N\,
0.79

| c
e Q N\
£ L= ANEEEAN
AN
—0.02} 078 1 \\ \\
=077 ] g&ﬁ"ﬁ P -
-0.04 5 ; 3 6 5 4 3 2 a1 0
] 0

FIG. 7. Plots off 3,,(6) for «=0.77, 0.78, 0.79, and 0.80. As we FIG. 9. An AC state losing stability to the synchronized solu-
move through this sequence of parameter values, there are twn. r=0.3. a starts at a value of 0.796 and each horizontal line
saddle-node bifurcations during which a pair of solutidgose of  represents an increasedof 0.002. We see that between 0.806 and
which is stabl¢ is created, and then a pair is destroyed. 0.808, the cluster state loses stability.
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1 T T T Further, although the degenerate transcritical bifurcation
of the synchronized state will be destroyed by the symmetry
08 b~ e ! breaking(and replaced with a large number of saddle-node
\ bifurcations, the bifurcations giving rise to asymmetric clus-
06 | s, \<—— DT bifurcation ter stategwhich are saddle-node bifurcationsill survive in
) 1 one-parameter families. Of course there is the practical ques-
s tion of what “sufficiently small perturbations” means. In or-
04} der to get some sense of an answer, we have simulated a
AC bifurcation version of Eq.(24) with nonidentical oscillators,
02} 1N
P=wtet QNE {=sin(¢; — ¢j + a) + 1 sin2(p - @)1},
0 . . : )=
03 04 0.5 (30)
i=1,...,N.

FIG. 10. The crosses indicate parameter values at which simul'he quantitiess—perturbations to the normal frequency of
lations of the full system wittN=200 were carried out and stable the oscillators—are uniformly distributed on intervals of the
asymmetric cluster states containing a single oscillator in thdorm [-10°/2,10°/2]. The parameteb thus controls the
smaller cluster were found. The AC and DT bifurcation lines aresize of the perturbations. As before, we chodse200. At
shown for reference. parameter values=0.3, «=0.79, where asymmetric clusters

coexist with the synchronized state, and in fact attract the

bifurcation. These observations are based on a large numbgijority of phase spadsee Sec. VI D, we find as expected
of numerical simulations. There appear to be two distincthat for sufficiently small perturbation§.e., largeD), the
scenarios in the lead up to bifurcation. The first is that al-2Symmetric cluster states continue to exist and to dominate
though the synchronized state becomes more and mofhase space.
weakly attracting, it still appears to attract the entirety of But as we move away from perfect symmetry, various
phase space, right up to the moment of bifurcation. In thigrends become apparent. To understand them, consider the
scenario, after bifurcation it is the attractors which includeparticular bifurcation giving rise to a set of cluster states with
stable heteroclinic cycles and contain unstable cluster staté@o oscillators in the smaller cluster. There &féN-1) such
in their closure, rather than stable cluster states, which tengluster states, and with full permutation symmetry, M{&
to be found[4,18]. We speculate that the bifurcation is a —1) bifurcations creating these clusters occur at the same
transcritical-homoclinic bifurcation as described[&]. parameter value. However, with broken symmetry—
The other scenario is that the basin of attraction of theassuming none of the bifurcations is destroyed—they will
synchronized state shrinks as bifurcation approaches. Shortlyccur at slightly different parameter values. This means that
before bifurcation, it becomes much more likely that we will at a given parameter value, different states will be more or
find stable cluster states rather than the synchronized state, lgss stable, in the sense of being closer to or further from
the point where, even in a region where we know the synbifurcation. Thus, we expect the symmetry breaking to mean
chronized state to be stable, a thousand sets of initial condthat some clusters are favored over others—in other words,
tions do not find it. In this scenario, after bifurcation it is certain oscillators prefer to be in the smaller cluster.
stable cluster states which tend to be found. Numerically this behavior manifests as follows: As the
perturbation increases, the oscillators in the smaller cluster
tend to come from one edge of the distribution. Because the
VIIl. BREAKING THE SYMMETRY smaller cluster lies to the right of the larger one at these
parameter values, oscillators whose perturbed frequencies
Real applications will rarely consist of identical oscilla- cause them to move in this direction are more likely to end
tors with entirely symmetrical coupling. In some situations,up in the second cluster than those whose perturbations in-
breaking the symmetry or adding noise has fundamental e€line them to move in the opposite directif2g3].
fects on the behavior of globally coupled systdhd 5,19, To make this notion more precise, we defirg
often destroying various invariant structures in phase space=2¢/10° for the ith oscillator drawn from a distribution
Hence it is a valid question to ask what happens to the sceparametrized byd, andQ(C)=(1/|C|)Z;.cq; as the average
narios described above if the symmetry is broken. In reply tay for a clusterC, whereC is the index set of the oscillators in
this question, we note first that all the states we describéhe cluster. Then & value near 0 for oscillators in the
away from the bifurcation points, in particular the synchro-smaller cluster would represent unbiased selection of oscil-
nized state and asymmetric cluster states, are hyperbolic. Wators from the distribution to make up the cluster, wie
thus expect these states to survive for sufficiently small pervalues differing from 0 would represent a bias in the choice
turbations of the system. What we mean is that symmetrpf oscillators to form the smaller cluster. What happens is
broken versions of these stat@shich continue to be peri- that as the symmetry is broken, oscillators which form the
odic, but where there is now some phase spread within eacdmaller cluster are increasingly chosen from one end of the
clustep continue to exist. distribution. This trend is illustrated in Fig. 11.
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ior can be completely characterized. It is important both be-
09 ¢ cause it is often associated with the loss of stability of the
il e synchronized state, and because such behavior could easily
: g'z A (and wrongly be attributed to noise or experimental error in
g 8 ) a real physical situation.
= 0'4 | 4 We have also seen numerically that the phenomenon of
§ 03 | asymmetric clustering survives significant destruction of the
g 0:2 I 3 symmetry of the system, although particular asymmetric
ol - clusters become preferred over others.
o < It is worth noting that although this paper is about asym-
01 . . metric clustering, numerically we can often construct more
0.2 0.4 0.6 0.8 symmetric clusters simply by moving oscillators from the

1/D larger to the smaller cluster. This process sometimes leads to
the breakdown of the cluster state, but not always. In fact, the
proportion 8 of oscillators in a cluster can be treated as a
parameter like any other from the point of view of exploring
clustering.

FIG. 11. Variation of the averag® value of the oscillators in
the smaller cluster as the symmetry is brokeia the parameteb).
Each point is based on 1000 simulations with oscillator initial con-
ditions drawn from a uniform distribution on the circle. For each
value ofD, there are one or two strongly preferred cluster sizes. For
perturbations greater than the values shown, the clusters start to blur
together, and there can be some ambiguity about which cluster a
particular oscillator belongs to.
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A second observation is that as the perturbation increases,
the average size of the smaller cluster increases, as illustrated APPENDIX A: FINDING THE AC BIFURCATION
in Fig. 12. AND FINDING ZEROS OF f, ,

We can interpret these trends as follows.

(i) As we break the symmetry of the system, cluster state kWe (I:an qwltze ZeAzi\sHy_ Calt%ulate Wh?? ar? .AC k_)|qurcat|§J/n
with certain oscillators in them are more stable and attrac‘}sf1 es place in Eq24) using the general technique in Sec. V.

more of phase space irst note that for this systema; =—-cosq«, b;=-sina, a,=r,
(ii) The greater stability of these states allows them toand b,=0. SC.)C3=_.S'na/2 qndc4=—|r/2. .
support a larger number of oscillators The AC bifurcation conditiofEqg. (23)] can be written as
2ir(cost +i sint) —ir[cog2t) —i sin(2t)]

IX. GENERAL REMARKS AND CONCLUSIONS . .
=-sina+i(cosa-r).

(A1)

It is in general hard to characterize completely the behav- _ _ _ _ _ _
ior of systems of coupled oscillators, due largely to the highEquating real and imaginary parts and a little manipulation
dimension of the state space. Due to its simplicity and physileads to
cal importance, a large emphasis has traditionally been

placed on synchronization. However, we have shown that a=-c ( 2 sint + sin(2t) ) (A2)
asymmetric clustering is another phenomenon which is 1+2cost-cog2t)/’
simple enough to be amenable to analysis—in fact, for
simple systems of oscillators, asymmetric clustering behav- sina
r=————————. (A3)
10 2 sint + sin(2t)
5 These expressions are used to plot the portion of the curve
ER ; shown in Fig. 4.
B We now sketch briefly how we confirm the behavior of
E f. , for the values of and« as plotted in Fig. 4.
5 0 7 1. We use the complex representations ofésand cosf
8 / to get thatf, ,=0 when
N /
§ “ A 0=—irz*+ MZ + 2S2 - Pz+ir (A4)
25 o2 o o6 08 =(z-1)(-irz®+QZ+Rz-1ir), (A5)
1/D

where z=€?, C=(cosa)/2, S=(sina)/2, M=(iC-9), P
FIG. 12. Variation of the average size of the smaller cluster,=(iC+S), Q=(M=ir), R=(P—ir). The root of 1 corre-
based on the same numerical experiments as in Fig. 11. sponds to the root of zero in the original equation foy.
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2. The cubic polynomial that remains on the right-handthose values of and « where all threeg; are real(i.e., all
side of Eq.(A5) after factoring generically has three distinct threez lie on the unit circle.
roots in the complex plane, which we call,z,,z;. We solve Note that from Sec. Ill there can be no more than one
for these roots using a symbolic algebra packégieing a  nontrivial stable real root of, ,. Hence we can only predict
long and unwieldy expression for each root in terms ahd  asymmetric two-cluster states and never three-cluster states
a). for this system(which is not to say that three-cluster states
3. From arguments in Sec. lll to ead there corre- cannot in general existlf more Fourier modes were incor-
sponds a uniqué, [0, 277). The points we plot in Fig. 4 are porated into the coupling, this situation would change.
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